Math A math block that should render with KaTeX:
f ( x ) = x β e 2 p i i ΞΎ x f(x) = x * e^{2 pi i \xi x} f ( x ) = x β e 2 p ii ΞΎ x A math block that should be rendered with MathJax:
Ο_{i,BTC} =min($9600,\text{ } $2500)
A math inline with KaTex: f ( x ) = x β e 2 p i i ΞΎ x f(x) = x * e^{2 pi i \xi x} f ( x ) = x β e 2 p ii ΞΎ x and one with MathJax Ο_{i,BTC} =min($9600,\text{ } $2500)
Another one with MathJax:
\text{Hourly Funding Payment} = \text{Position Notional Value} \times \text{Funding Rate}\
And a bigger one with KaTeX:
1 ( Ο 5 β Ο ) e 2 5 Ο = 1 + e β 2 Ο 1 + e β 4 Ο 1 + e β 6 Ο 1 + e β 8 Ο 1 + β― \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } ( Ο 5 β β β Ο ) e 5 2 β Ο 1 β = 1 + 1 + 1 + 1 + 1 + β― e β 8 Ο β e β 6 Ο β e β 4 Ο β e β 2 Ο β
Long inline math 1 ( Ο 5 β Ο ) e 2 5 Ο = 1 + e β 2 Ο 1 + e β 4 Ο 1 + e β 6 Ο 1 + e β 8 Ο 1 + β― 1 ( Ο 5 β Ο ) e 2 5 Ο = 1 + e β 2 Ο 1 + e β 4 Ο 1 + e β 6 Ο 1 + e β 8 Ο 1 + β― 1 ( Ο 5 β Ο ) e 2 5 Ο = 1 + e β 2 Ο 1 + e β 4 Ο 1 + e β 6 Ο 1 + e β 8 Ο 1 + β― 1 ( Ο 5 β Ο ) e 2 5 Ο = 1 + e β 2 Ο 1 + e β 4 Ο 1 + e β 6 Ο 1 + e β 8 Ο 1 + β― 1 ( Ο 5 β Ο ) e 2 5 Ο = 1 + e β 2 Ο 1 + e β 4 Ο 1 + e β 6 Ο 1 + e β 8 Ο 1 + β― 1 ( Ο 5 β Ο ) e 2 5 Ο = 1 + e β 2 Ο 1 + e β 4 Ο 1 + e β 6 Ο 1 + e β 8 Ο 1 + β― \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } ( Ο 5 β β β Ο ) e 5 2 β Ο 1 β = 1 + 1 + 1 + 1 + 1 + β― e β 8 Ο β e β 6 Ο β e β 4 Ο β e β 2 Ο β ( Ο 5 β β β Ο ) e 5 2 β Ο 1 β = 1 + 1 + 1 + 1 + 1 + β― e β 8 Ο β e β 6 Ο β e β 4 Ο β e β 2 Ο β ( Ο 5 β β β Ο ) e 5 2 β Ο 1 β = 1 + 1 + 1 + 1 + 1 + β― e β 8 Ο β e β 6 Ο β e β 4 Ο β e β 2 Ο β ( Ο 5 β β β Ο ) e 5 2 β Ο 1 β = 1 + 1 + 1 + 1 + 1 + β― e β 8 Ο β e β 6 Ο β e β 4 Ο β e β 2 Ο β ( Ο 5 β β β Ο ) e 5 2 β Ο 1 β = 1 + 1 + 1 + 1 + 1 + β― e β 8 Ο β e β 6 Ο β e β 4 Ο β e β 2 Ο β ( Ο 5 β β β Ο ) e 5 2 β Ο 1 β = 1 + 1 + 1 + 1 + 1 + β― e β 8 Ο β e β 6 Ο β e β 4 Ο β e β 2 Ο β